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Graphical Abstract

Abstract

Finite element analysis (FEA), a common approach for simulating stress distribution for a given geometry, is generally
ssociated with high computational cost, especially when high mesh resolution is required. Furthermore, the non-adaptive
ature of FEA requires the entire model to be solved even for minor geometric variations creating a bottleneck during iterative
esign optimization. This necessitates a framework that can efficiently predict stress distribution in geometries based on given
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boundary and loading conditions. In this paper, we present StressD, a framework for predicting von Mises stress fields based
on the denoising diffusion model. The StressD framework involves two models, a U-net-based denoising diffusion model
and an auxiliary network to generate and predict stress distribution in structures. The denoising diffusion model generates a
normalized stress map based on the given geometry, boundary conditions and loading condition, while the auxiliary network is
used to determine the scaling information needed to un-normalize the generated stress map. We evaluate the StressD framework
on cantilever structures and show that it is able to accurately predict von Mises stress fields while significantly reducing
computational cost compared to traditional FEA.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Deep learning; Denoising Diffusion Probabilistic model; Vision Transformer; High resolution Stress field prediction; FEA Surrogate
model

1. Introduction

The emergence of new manufacturing paradigms like additive manufacturing [1–3], and digital manufacturing
4–6] as well as advances in metamaterials [7,8], combined with generative design [9,10] and topology optimization
pproaches [11,12], has created a demand for fast and accurate methods for predicting stress and deformation fields
n structures to manufacture an optimally designed product. This task has been typically accomplished using finite
lement analysis (FEA) solvers that use a multi-scale approach to solve multi-physics partial differential equations
PDEs) on a discretized domain using finite element methods (FEM) [13–15]. Using iterative solvers or direct
actorization-based solvers, a linear FEA model for solid mechanics solves for F = K Q, where F is the force

vector, K is the stiffness matrix assembled from material parameters, boundary conditions, and initial conditions,
and Q is the nodal displacement matrix. The material properties and the derived nodal displacement matrix are
then used to calculate the nodal stress and strain tensors [16]. With an increase in geometric complexity, non-linear
material characteristics, and high mesh resolution, the conventional FEA-based simulations become impractical for
generative design and topology optimization, particularly when dealing with a large design parameter space.

Deep learning-based methods have enabled us to effectively process large volumes of complex data and extract
meaningful features leading to the development of highly accurate models that have transformed various fields, such
as fluid mechanics [17–19], material property prediction [20–22], topology optimization [23,24], among others [25].
There have been attempts to accelerate FEA analysis through the application of deep learning, including creating
models for the constitutive relation of the material [26,27], improving the numerical quadrature of the FEM stiffness
matrix [28], and verifying the plausibility of the FEM model using convolution neural networks as classifiers [29].
However, these methods still rely on finite element methods-based solvers, and as non-linear models become more
complex with the integration of multi-physics PDEs to narrow the gap between simulations and experimental data,
these finite element-based methods are hitting their limitations.

To mitigate the aforementioned issues, a viable option is to adopt a data-driven approach by developing a machine
learning-based surrogate model [22,30,31] to learn the underlying phenomena from existing FEA simulation and
make fast inferences on unseen samples, which would otherwise require running the entire FEA simulation again
thereby reducing the computational time during topology optimization or generative design.

Several deep learning-based surrogate models have been proposed, such as Physics-Informed Neural Networks
(PINNs) and DeepONets [32], which have been applied in solid mechanics as surrogate models [33–36] to identify
material properties [37], predict stress distribution for plastic deformation [38,38,39], elastoplastic structures [40],
as well as to detect internal structures and defects [41]. While these models have demonstrated remarkable accuracy,
these models are primarily dependent on sampling points in the material domain [42] and require prior knowledge of
the system to model the loss function, thereby limiting their applicability for complex geometries and multi-physics
systems.

Given the significance of physical fields like distributions of strain or stress tensors in various design applications
and engineering analyses, various convolution neural network (CNN) based deep learning models have been
proposed such as difference-based deep learning framework [43] for predicting stress in composites with random
volume fractions, bayesian based neural network to predict stress fields in porous structures [44], ResNet [45] based
network for predicting stress in 2D cantilever structures [46]. In addition to this, U-Net based networks have been

proposed for predicting structural response of defect-containing AM microstructures [47], stress in inhomogeneous
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non-linear materials [48], and stress field prediction in fiber-reinforced composite materials [49]. Most recently,
multi-headed self-attention based approaches have proven successful in predicting physical field data like stress,
energy, and displacement fields, as well as overall material properties characterizing the nature of stress distributions
due to applied loads and crack defects [50,51].

Generative models like Generative Adversarial Networks (GANs) [52,53], comprising two neural networks –
generator that creates new data from Gaussian noise, and a discriminator that assesses these generated samples

gainst the training data – are trained concurrently to reach a Nash equilibrium, where neither the generator nor
he discriminator can enhance their performance without the other modifying its strategy. These models have been
uggested as a method of unsupervised learning that enables the creation of new data consistent with the distribution
f the training data. Conditional generative adversarial networks (cGANs) [54], an extension of GANs that allow
or a controlled generation by passing auxiliary information such as labels, have demonstrated superior performance
ompared to prediction-based networks when used on unseen data with a limited number of training samples and
ata with finer mesh size [46,55]. These networks have been used to predict stress and strain fields as well as
aterial properties from material microstructure [56], predict full stress fields for heterogeneous material [57], and

ave also been used for the prediction of thermal stress [58].
While GAN-based networks present a range of advantages over predictive models – including their capacity to

ake generalized predictions on smaller and diverse datasets [59], and their ability to model complex conditional
istributions – they also possess certain limitations, such as the risk of ‘mode collapse’, a situation where the
enerator fails to capture the full range of diversity present in the training data. Additionally, these networks might
lso face the issue of ‘non-convergence’, where the iterative process of learning fails to reach Nash equilibrium,
ausing instability in the model’s performance.

To address these limitations of GANs, diffusion-based models [60] have been proposed, where Gaussian noise is
ncrementally added to the training sample until it becomes pure noise, allowing the neural network to progressively
emove noise and learn from it [61,62]. This approach has shown improved performance compared to GAN-based
etworks [63]. Diffusion-based models have demonstrated exceptional performance not just for unconditional image
eneration [64,65] and conditional image generation [66,67], but also for a diverse range of image-based tasks,
ncluding flow field reconstruction using super-resolution [68], in painting and image-to-image translation [69].

In the realm of mechanics, materials modeling and engineering design, denoising diffusion-based models have
een used to assess dynamic fracture mechanisms for complex geometries [70], predict high-resolution stress fields
rom material microstructures [71]. The DDPM-based approach has the potential to generate a range of possible
olutions, thereby enabling the quantification of uncertainty. Owing to this capability and their ability to generate
iverse, high-quality data, DDPMs are seeing increased use in addressing inverse design problems, where specific
eometries are generated given certain conditions. This includes their application in the design of microstructures
ith fine-tuned nonlinear material properties [72], creation of microstructures for organic solar cells [73] and

o generate designs tailored to a specific mechanical response [74]. These applications highlight the potential of
DPMs to offer innovative and practical solutions for inverse design problems, which typically presents a variety
f potential solutions.

Diffusion-based models operate on bounded data, where all the samples within a dataset have defined bounds,
uch as images where every pixel’s RGB value falls within the range of 0–255. However, for prediction tasks, the
amples are unbounded and can potentially have any value. Therefore, to the best of our knowledge, there have
een no attempts to use diffusion-based models for making predictions on such types of data. Simply scaling the
ntire dataset based on the values of the entire dataset can potentially hinder the generalizability of the model during
esting. In addition, since diffusion-based models learn to estimate the noise added at each time step, adding a fixed
mount of noise based on the entire dataset leads to some samples degrading faster than others, creating instability
uring the training. An alternative solution to the unboundedness of the data in diffusion-based models is to use an
utoencoder to encode the inputs, as in latent diffusion models [75]. However, the accuracy of the model in such
ases is heavily dependent on the ability of the decoder to reconstruct the results, introducing an additional potential
ource of error during prediction, especially in the case of out-of-distribution data affecting the generalizability of
he model.

The current study introduces a novel conditional DDPM-based framework that predicts 2D stress distribution of
structure given geometry, boundary conditions, and loading conditions. As DDPM models operate on normalized
ata within the range of [−1, 1], our approach involves a two-step process. Fig. 1 shows the overall schematic of
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Fig. 1. Description of workflow.
(a) Inputs: geometry, boundary & loading conditions; (b) vision transformer-based auxiliary network; (c) CNN encoder creates context
vector for (f) U-Net diffusion model; (d) adds Gaussian noise to ground truth stress fields; training learns noise at each step T; inference
iteratively removes noise from (e) pure Gaussian noise using context vector, generating normalized stress fields; (g) predicted min/max values
un-normalize generated stress fields.

our framework. First, we use DDPM to predict a normalized stress field, and then by using a vision transformer
to predict the maximum and minimum values of stress, we un-normalizing and rescale the generated stress fields.
We assess our framework using the dataset introduced in [46,55], demonstrating a considerable enhancement in
outcomes when compared. Additionally, we evaluate our framework on both fine mesh and sparse datasets.

2. Methodology

2.1. Auxiliary network

The stress map produced by the diffusion-based method is normalized to the range of [−1, 1] due to the input
ata being normalized in the same range. In order to obtain the stress map with actual stress values, it is necessary
o perform a rescaling operation on the generated stress map. To achieve this, we employ an auxiliary network that
redicts the minimum and maximum stress values required to unnormalize the normalized stress map.

Transformers, based on self-attention mechanisms, have become a popular model architecture for NLP tasks [76].
n recent years, there has been a surge of interest in applying transformer-based approaches to various computer
ision applications, including object detection [77], segmentation [78], and more, highlighting a growing desire to
xplore the potential of these models in the field of computer vision [79]. In our work, we use the Vision Transformer
ViT) [80] as a backbone model to predict the minimum and maximum stress values required to unnormalize the
tress map generated through the diffusion-based method.

Fig. 2. shows the schematic of the auxiliary network with ViT as the backbone. Here, the input data, which
ncludes geometry, boundaries, and loading conditions, is first split into fixed-sized non-overlapping patches, which
re then flattened and embedded with positional encoding to produce a sequence of embeddings. This embedding
equence is then fed into a Transformer-based encoder, which has a series of transformer blocks that use the self-
ttention mechanism [81]. As stress values scale with the applied force, the minimum and maximum values of
orce in the X and Y directions are extracted and passed through a linear layer. The output from the linear layer is

ombined with the output from the transformer and passed through a bilinear layer that computes the element-wise
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Fig. 2. Schematic of Auxiliary network with ViT backbone.
The geometry, boundary conditions, and loading conditions are split into patches of a fixed size, which are then passed through linear
projection and positional embedding before being input into the transformer. The loading condition is further processed to extract the
maximum and minimum values, which are passed through a linear layer. The resulting output from the linear layer and that of the
transformer are subsequently passed through a bilinear layer, followed by a series of linear layers to obtain the minimum and maximum
stress values.

product of the feature from these two inputs, followed by a series of linear layers to predict the minimum and
maximum stress.

2.2. Denoising diffusion probabilistic model (DDPM)

Denoising diffusion probabilistic models (DDPM) [61] involves defining a Markov chain of diffusion steps to
gradually add tractable noise to the input data in the forward process. Considering normalized stress map as input
x0, the forward diffusion process can be modeled as a Markov chain [61] :

q(xt |xt−1) = N (xt ;
√

1 − βt xt−1, βt I )
q(x1:T |x0) =

∏T
t=1 q(xt |xt−1)

(1)

Where βt ∈ (0, 1) is the variance scheduler which controls the step size of noise added.
Our goal is to generate meaningful data from Gaussian noise input xT ≈ N (0, I ) given a conditioning vector

‘z’. The generation process (backward process) is the reverse of the forward process where the neural network p,
learns to recover the xt−1 given xt and z values (see Fig. 3). The backward process can be written as:

p(x0 : T ) = p(xT )
T∏

t=1

p(xt−1|xt , z) (2)

2.3. Datasets

To assess the performance of our approach, we employed four datasets, namely a coarse mesh dataset, a fine

mesh dataset, a sparse dataset and hyper elastic dataset, as shown in Fig. 4.
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u

Fig. 3. Schematic for training DDPM.
The input consists of geometry, boundary conditions, and loading conditions, is first fed through a convolutional neural network to generate
a context vector z for conditioning the Denoising Diffusion Probabilistic Model (DDPM). In the forward process, the normalized stress map
x is subjected to tractable noise for T timesteps, gradually becoming more degraded, at t = T resembling pure Gaussian noise. During the
backward process, the model learns to estimate the added noise at each timestep t given the conditioning z and xt .

Fig. 4. Datasets used for evaluation.
(a) The coarse mesh dataset with mesh size 24 × 32. (b) Fine mesh dataset of mesh size 256 × 256 and (c) Sparse dataset with 5%

niformly sampled points in the material domain.
6
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2.3.1. Coarse mesh dataset
In our analysis, we utilized Nie et al.’s multichannel dataset [46,55], which considers a cantilever structure

omposed of homogeneous and isotropic linear elastic material, with the left end of the structure fixed and the right
nd bearing evenly distributed external static load in both horizontal and vertical directions.

The dataset contains 80 geometries divided into six groups, and has a mesh size of 32 × 24. Each datapoint
omprises a total of 5 channels. Each geometry (channel 1) is defined by a binary array, where the number 1 signifies
he material domain and 0 signifies an empty space. The two boundary condition channels denote the fixed left end,
ttributed with a value of −1 at the location where it is fixed. The right end of the structure, where the load is
pplied, is signified in the two load condition channels, indicating the force’s magnitude in the x and y directions.

The load orientation varies from 0 degrees to 355 degrees in increments of 5 degrees, and for each orientation,
the load magnitude increases from 0N to 100N in increments of 5N. Finally, the fifth channel contains the von
Mises stress field. This dataset comprises a total of 120,960 cases. Fig. 4(a) provides a visual representation of
the geometry, boundary conditions, and loading conditions that are used as input to our model, along with the von
Mises stress fields, which is the output we are aiming to predict.

2.3.2. Fine mesh dataset
To produce the fine mesh dataset, we uniformly sampled 50,000 data points from the coarse mesh dataset. We

then upsampled the geometry channel to a mesh size of 256 × 256, maintaining the boundary and loading conditions.
o compute the stress fields, we assumed that all elements within the material domain were 4-node quadrilaterals
ith a size of 1 mm × 1 mm, and solved them using SolidPy [82] FEM solver. Each problem takes around 45 s to

olve.

.3.3. Sparse dataset
In order to simulate sparse sensor placement for Structural Health Monitoring (SHM) [83–85] with a focus on

reventive maintenance, we incorporated the fine mesh dataset in our training approach. This involved randomly
ampling 5% of points in the von Mises stress fields within the material domain during training, with the sampled
oints being different every time the data point was encountered in subsequent epochs. The main objective of
he task was to complete the sparse stress field, with no information being provided about the geometry, loading
ondition, or boundary condition. This problem can be perceived as similar to a task resembling inpainting.

.3.4. Hyper-elastic dataset
To evaluate both the performance and the underlying learning capabilities of our model when applied to non-linear

onstitutive models, we created a distinctive dataset based on a 2D hyperelastic problem. This specific problem was
elected due to its deviation from the linear elastic model that was employed in our previous datasets.

Hyperelasticity, as a non-linear problem, necessitates a more complex understanding of material behavior,
specially when large deformations are involved, as opposed to relatively straightforward linear-elastic relations.
his provides a more challenging, yet realistic, test case for our model, allowing us to evaluate its adaptability and

earning prowess in a more demanding scenario. This shift from a linear to a non-linear problem thus offers an
nteresting and robust assessment of our model’s ability to grasp and accurately predict complex material behavior.

To generate a comprehensive and varied dataset, we constructed 49,750 unique datapoints, each with a distinct set
f parameters. These parameters include the number of sides (ranging from 3 to 7) of a polygonal cut introduced into
square plate, the position and dimensions of the cut, and the magnitude of force applied. In these configurations,

he square plate was fixed at one end while the force was applied at the opposite end.
For the numerical solutions to these problems, we utilized FEniCS [86–89], an open-source platform for solving

artial differential equations (PDEs). To ensure compatibility with our model, we converted the resulting solution
elds (which were originally obtained on a triangular mesh) to a structured 2D rectangular grid. This step involved

he interpolation of stress field data from the FEniCS solution to a 2D numpy array using PyVista. The detailed
roblem formulation is provided in Appendix:A.

The training phase of our model utilized 39,800 data points, each representative of unique problem settings, and
he remaining 9,950 datapoints were used as test set for evaluation.

In order to rigorously assess our model’s capabilities of generating and predicting results for unseen geometries,

e developed an additional test set comprising 10,000 datapoints. These datapoints were characterized by an
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octagonal (8-sided) cut in the square plate, varying in dimensions and positions. Notably, this specific geometric
configuration was not part of the model’s training data, ensuring a stringent test of the model’s ability to generalize
beyond its training scope.

2.4. Implementation details

Our DDPM network adopts the U-Net architecture [90]. Initially, we input the four channels of geometry, loading,
nd boundary conditions into a CNN-based encoder, which maps them to a one-channel array that represents the
ontext z. We then normalize the von Mises stress fields using min–max normalization to scale the data between
1 and 1 and add noise to this normalized stress map using a cosine variance scheduler for 500 time steps. The

ontext z and the noised stress map are combined to form a two-channel image, which we feed into a conditional
-Net that comprises ReNet blocks [45]. The U-Net incorporates residual connections between its upsampling and
ownsampling layers. We embed the time step t representing the magnitude of the added noise by utilizing sinusoidal
osition embeddings [76]. Moreover, we flatten the context vector after it undergoes a series of convolution layers
nd add it to the time embeddings for better guidance. Adam optimizer [91] is utilized to optimize the network,
ith the objective of minimizing mean absolute error (L1 Loss). Additionally, we implement a variable learning

ate that is reduced on plateau. In case of a sparse dataset, we input a sparse stress map with only one channel, and
he process remains the same.

The input to the auxiliary network includes the geometry condition, loading condition, and boundary condition
or non-sparse datasets, and only sparse data for sparse datasets. This input is presented in the form of a 4-channel
rray, which is partitioned into patches of size 4 for coarse mesh datasets and 16 for fine mesh datasets and sparse
ata. These patches are then converted into a linear embedding of 256 and then fed into the transformer blocks to
redict the minimum and maximum values. Detailed implementation details are provided in SI.

. Results

To compare the performance of our method with existing techniques such as StressGAN [55] and StressNet [46],
e adopted a range of metrics such as mean absolute error, mean squared error, peak stress absolute error, and
ercentage peak stress absolute error (MAPE). However, our network was specifically designed to minimize the
ean absolute error.
Given predictions ŷ and ground truth values as y we define our metrics as:

M AE =
1
n

n∑
j=1

∥y j − ŷ j∥

M SE =
1
n

n∑
j=1

(y j − ŷ j )2

M AP E =
M AE

max{y} − min{y}
∗ 100%

P AE = ∥max{y} − max{ŷ}∥

To assess the performance of our methods on coarse and fine mesh datasets, we randomly partitioned each dataset
into training and testing sets. Specifically, we used 80% of the total coarse mesh dataset ( 100,000 samples) for
training and the remaining 20% ( 20,000 samples) for testing. Similarly, for the fine mesh dataset, we trained our
model on 40,000 samples and evaluated it on 9,100 data samples. Table 1 shows the quantitative evaluation of our
approach, it is observed that our network shows significant improvement compared to existing models. Additionally,
our evaluation on the hyperelastic dataset shows that our framework’s performance is consistent with the linear
elastic dataset. This reinforces the premise that our data-driven approach, which does not incorporate any physics-
based or model-based loss in its loss function, is agnostic to the underlying finite element model. This suggests
that our approach should yield similar results across different FEM models, provided that sufficient data is made
available to ensure its generalizability. Fig. 5 shows the stress map predicted by the StressD framework for a random

sample from the test set, highlighting its strong alignment with the ground truth.
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Fig. 5. Predictions made by StressD on test dataset.
Prediction, ground truth and difference for the test set of (a) Coarse mesh dataset, (b) Fine mesh dataset, (c) Sparse dataset, and (d)
hyper-elastic dataset.

3.1. Sampling time-steps and MAE

The quality of the samples generated from a diffusion model during inference is heavily influenced by the
number of time steps used in the iterative diffusion process. While increasing the number of time steps can result
in more accurate and precise samples, it can also lead to longer inference times due to the iterative nature of the
9
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Table 1
Quantitative evaluation of StressD framework.

Network Dataset MAE MSE MAPE PAE

StressGAN
Coarse Mesh dataset

0.19 0.13 0.14% 0.48

StressNet 0.2 0.15 0.15% 0.5

StressD (ours)
0.0418 0.0125 0.02% 0.0327

Fine Mesh dataset 0.4889 23.0691 0.13% 1.5595

Sparse Dataset 1.1248 7.3714 - 7.0718

Hyper-elastic dataset 1.5818 234.8559 0.05% 10.1819

Fig. 6. Sample generation and related MAE values for different sampling time steps.
Time taken to generate samples using DDIM and DDPM for different time steps on a (a) coarse mesh dataset and (b) fine mesh dataset (c)
Sparse dataset and (d) Hyperelastic dataset.

sampling process. To address this issue, recent research [62,66,92] has been focused on enhancing the speed of
the sampling process while simultaneously improving the quality of the generated samples, one such approach,
Denoising Diffusion Implicit Model or DDIM, [93] exploits the fact that the minimizing objective depends only
on q(xt |x0) and not on q(x1:T |x0) as formulated in DDPM, to make an inference process on fewer steps while
maintaining the quality of generated samples, using an existing model trained on DDPM objective.

Fig. 6 shows a comparison between DDPM and DDIM in terms of sampling time and Mean Absolute Error
(MAE) when generating samples from a test dataset. The box plot illustrates the 0–95 percentile range of the data,

including mean and median values. The sampling time comparison was conducted using a batch size of 1 on GPU.

10
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Fig. 7. Diffusion model performance.
Performance of denoising diffusion model with DDPM and DDIM sampling on (a) coarse mesh dataset and (b) fine mesh dataset.

Since denoising diffusion-based models are stochastic and samples are generated from Gaussian noise, the figure
shows the average MAE values obtained from three complete evaluations of the test dataset for each method.

According to the findings, sampling with DDIM for 250-time steps results in faster sample generation compared
to DDPM. Moreover, DDIM either performs better or equally well as DDPM in terms of mean absolute error values
for this time step. However, as the number of sampling time steps decreases, DDIM’s MAE performance decreases,
and the generated samples have greater variations.

3.2. Performance of individual models

As our method does not entail any learning during the scaling process and the two networks operate indepen-
dently, it is essential to evaluate the performance of each network separately. This is due to the potential for error
amplification in the generated samples, contingent on the maximum stress value predicted by the ViT network. Fig. 7
provides a performance snapshot of the denoising diffusion-based model’s capability in generating normalized stress
fields. Given the stochastic nature of these models, we report the MAE values averaged across three runs. For the
coarse mesh dataset, the MAE value of the ViT network in predicting the maximum and minimum values, essential
for stress field normalization, stands at 0.01 MPa. Conversely, for the fine mesh dataset, the MAE value is marginally
higher at 0.48 MPa.

3.3. Generalization on unseen geometry

Using the model trained on the hyperelastic dataset, we performed tests on an unseen geometry - a dataset of
10,000 datapoints featuring a square plate with an octagonal cut with similar formulation as hyperelastic dataset. This
geometry was intentionally excluded from the training data to rigorously assess the model’s ability for generalization.
With a MAE of 133 MPa and a Percentage Peak Stress Absolute Error (MAPE) of 1.7%, our model has demonstrated
robust performance in terms of generalizability, as evidenced by its performance on unseen geometries. This
highlights its reliability in predicting stress distributions across diverse conditions (see Fig. 8).

Furthermore, it is worth noting as shown in Fig. 9, that the diffusion model plays a significant role in accurately
generalizing the stress distribution for unseen geometry. It was also found that the auxiliary network, which was
designed to predict the inverse scaling value, was a major contributor to the overall prediction error.

4. Discussion

4.1. Model performance

We have presented a deep learning approach for predicting von Mises stress fields for linear as well as non-linear
constitutive models by merging a denoising diffusion probabilistic model with a vision transformer. By incorporating
11
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Fig. 8. Predictions made by StressD framework on unseen geometry from hyperelastic dataset.
Prediction, ground truth and difference of randomly selected samples generated from StressD framework on unseen geometry for hyperelastic
problem.

Fig. 9. Assessment of Model Performance on Unseen Geometries with the Hyperelastic condition.
Evaluation of the Mean Absolute Error (MAE) metric for (a) the StressD framework applied to the unseen geometry dataset under hyperelastic
conditions, and (b) the Diffusion model.

the DDPM model with an auxiliary network (in our case, a vision transformer), we have effectively divided the
stress field prediction task into generation and scale prediction tasks. This enables us to utilize DDPM-based models,
which have been employed as generative networks, along with vision transformers, which have primarily been used
for class prediction.

The performance metrics of our model speak volumes about its effectiveness. We observed an approximate
78% improvement in MAE (Mean Absolute Error) results and a significant 92% enhancement in MSE (Mean
12
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n
f
t

Squared Error) values compared to previous models. Furthermore, our model’s capability to accurately predict non-
linear hyperelastic problems without necessitating substantial changes in the network architecture demonstrates its
versatility. This suggests that our proposed approach is not bound by the specificities of a finite element method
(FEM) model, but rather it can be universally applied across various problem types, reflecting its broad applicability
and utility.

4.2. Efficiency and speed

Our approach provides a substantial enhancement in computation speed while maintaining accuracy, ensuring
o significant compromise on accuracy. A comparative analysis with FEM revealed that our DDPM-based model
acilitates nearly a 44.4% speedup in sample generation time, generating one sample in around 25 s as opposed
o the typical 45 s required by FEM on the fine mesh dataset (256 × 256). This improvement in time for results

generated from our model is even more pronounced when utilizing the DDIM sampling approach, which allows
the inference time to be reduced to an impressive 2 s for 50 time steps. Additionally, in the case of the non-linear
hyperelastic dataset (size 64 × 64), the inference time for 500 time steps is nearly 17.5 s. Employing the DDIM
approach for 50 time-steps shrinks this to approximately under 2 s, achieving slightly better performance without a
considerable uptick in error. In the case of the coarse mesh dataset the inference time for 500 time steps is around
18 s and for 50 time steps, using DDIM sampling, is under 1 s.

This considerable reduction in inference time does not lead to a significant compromise in prediction accuracy,
thereby achieving an optimal balance between speed and precision. In contrast to FEM, which experiences an
exponential increase in solution time with rising mesh size and precision requirements, our approach demonstrates
a constant and much faster alternative due to its reliance on matrix multiplication for a set number of times rather
than iterative optimization regardless of the underlying constitutive and FEM model.

4.3. Selection and rationale for the neural network model

We employed diffusion-based models that progressively adds tractable noise into the data during training until
the data completely deteriorated and resembles Gaussian noise. The neural network is trained to predict the
incrementally added noise at each time-step, given the noised data, the conditioning vector, and the corresponding
time-step. During the reverse process, the network guides an organized removal of the noise until the original data is
reconstructed. In doing so, it effectively learns both the high and low-frequency features of the data. In the context of
our stress prediction model, this approach facilitates learning underlying patterns in the data amidst the uncertainty
introduced by the added noise. The noise functions as a form of regularization, boosting the performance of the
model and enhancing its ability to generalize. This becomes particularly advantageous when dealing with complex,
high-dimensional data where the model’s robustness to minor variations and noise is paramount.

One significant advantage of using transformers is their self-attention mechanism, which has a global receptive
field, as opposed to the local receptive fields of CNNs. This means that transformers can identify dependencies across
an entire image, not just local areas. Additionally, transformers incorporate positional information about pixels,
proving particularly valuable when dealing with sparse datasets where only 5% of points within the material domain
are sampled. Transformers’ adeptness in predicting two values (minimum and maximum) was found superior,
especially for sparse datasets. Initial experiments with CNNs for similar predictions yielded less satisfactory results,
potentially due to the inherent ‘averaging out’ of values within the CNN’s kernel window.

4.4. Scaling of values

In our model, scaling serves a crucial function by normalizing the stress fields, thus facilitating their generation
by the DDPM. Following this, the Vision Transformer (ViT) predicts the necessary scaling factors, specifically the
minimum and maximum values of the stress under given geometry, loading conditions, and boundary conditions.
This process enables the re-transformation of normalized stress fields back to their original stress magnitudes. This
strategic partition of the stress prediction task into two distinct parts – stress field generation and scale generation

– allows for an efficient and powerful solution for stress field prediction.

13
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This separation of tasks leverages the respective strengths of both DDPM and ViT, providing a model that is
oth efficient and effective. Notably, this division of labor allows the neural network to learn more effectively, as it
lleviates the requirement for the network to handle the full complexity of predicting stress maps and scaling factors
imultaneously. The network can focus on learning the nuanced patterns and correlations in the stress fields without
he additional complexity of varying magnitudes, thereby enhancing its overall performance. An added benefit of
ur approach stems from the independence of the two networks – the DDPM and the ViT – in our architecture.
n more traditional, interconnected networks, error or loss in one part of the model can potentially affect other
arts, leading to a domino effect that may complicate diagnosis and correction. However, by maintaining a level of
ndependence between the DDPM and the ViT, it is easier to isolate and identify the source of any inaccuracies or
nefficiencies. This division ensures that the impact of any poor prediction remains confined within its respective
ask—either the generation of stress maps or the determination of scaling factors.

.5. Future work

In our study, we have applied the Denoising Diffusion Probabilistic Models (DDPMs) to 2D geometrical
roblems. However, real-world engineering scenarios often involve three-dimensional structures, adding a degree
f complexity both in terms of problem formulation and computational requirements. The extension of our model
o cater to 3D geometries remains a challenging but promising future research direction, potentially broadening the
pplicability of our approach.

Our current work revolves around the forward problem of computing stress distributions given geometries, loads,
nd boundary conditions. Yet, the concept of DDPMs opens up intriguing possibilities in tackling inverse design
roblems. These problems inherently revolve around determining the optimal or desired outcomes—be it the optimal
istribution of materials given a set of constraints and objectives in topology optimization, or estimating material
arameters or loads from observable data like displacements or stresses in parameter identification problems. The
daptation of our model to these problems could be an innovative extension of our work.

In addition, integrating structural dynamics into the predictive model could be another interesting avenue to
xplore. This would imply a shift from predicting static stress distributions to computing dynamic stress changes
ver time given a specific dynamic load. This extension, while challenging, could significantly increase the model’s
sefulness in more diverse engineering scenarios.
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Appendix A. Hyperelastic problem formulation

In order to assess the applicability of our model for non-linear problems we generated a dataset using hyperelastic
roblem formulation as provided by “Fenics solid tutorials” [94], for detailed formulation please check the reference.
onsidering deformation:

y(X ) := X + u(X )

F(X ) := Grady(X )

The length, surface area, and volume are then transformed by

dl = Fd L , ds = (det F)F−T d S, dv = det FdV

his implies that the unit normal N in the reference configuration has a corresponding relationship with the unit
normal in the deformed configuration.

n =
det(F)F−T N

∥det(F)F−T N∥

When using the Lagrangian description, it is more appropriate to use the 1st Piola–Kirchhoff stress tensor P .
his tensor maps a normal N to its corresponding traction in the deformed configuration. This tensor has a specific

elationship to the Cauchy stress tensor σ , and rewriting it in terms of body forces B and surface forces G:

P = (det F)σ F−T

B = (det F)b

G = ∥(det F) f −T N∥g

Rewriting in Lagrangian coordinates:

Div P + B = 0 in Ω , (A.1)

P · N = G, on ΓN , (A.2)

u = ū, on ΓD, (A.3)

This is similar to Euler–Lagrange equations of the energy functional minimized over the displacements satisfying
he dirichlet boundary condition. The 1st Piola–Kirchhoff stress tensor is then given by the stored energy density

W by

I (u) =

∫
Ω

W (F) dV −

∫
Ω

B · u dV −

∫
∂Ω

G · u dS (A.4)

P =
∂W
∂F

. (A.5)

Here we consider the Mooney–Rivlin energy:

W (F) = a|F|
2
+ b|JF−⊤

|
2
+ cJ 2

− d ln J + e, J = det F.

The positive parameters (except of e) can be expressed in terms of the Lame constants λ and µ. Here we have used
a simplified form called Neo-Hook energy:

W (F) =
µ

2
(|F|

2
− 3 − 2 ln det F)

ppendix B. Transformer and self-attention

The self-attention mechanism is a driving factor of the transformer model [76,95], designed to discern long-range
ependencies and contextual nuances within input data. In Vision Transformer (ViT) [80] model, this mechanism
dentifies various regions of the input in the context of the whole image, evaluating their significance in relation to
he task being executed.
15
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The self-attention mechanism creates a weighted sum of the input data. The weighting factors are derived from
he level of similarity between the input features. This methodology enables the model to emphasize the input
eatures that hold more relevance, facilitating the extraction of more informative representations of the input data.

At its core, the self-attention component operates as a computational unit that measures the interactions between
airwise entities. It enables a network to understand and learn the underlying hierarchies and alignments within the
nput data. As a result, it has emerged as a critical factor in enhancing the robustness of visiozzn networks. In our
ork, we employed the Multi-Head Scaled Dot Product Attention mechanism as proposed by Vaswani et al. [76].
nlike the single-headed attention, the multi-head attention mechanism operates by computing the attention multiple

imes in parallel. Each individual ‘head’ computes an independent attention output, and these outputs are then
oncatenated and linearly transformed to match the expected dimensions.

The Multi-Head Scaled Dot Product Attention can be mathematically represented as [95]:

MultiHead(Q, K , V ) = Concat(head1, . . . , headh)WO

here each individual head (n) is computed as:

headi = Attention(QWQi , K WK i , V WV i )

nd Attention is computed using the Scaled Dot-Product Attention:

Attention(Q, K , V ) = softmax
(

QK T

√
n

)
V

In the above formula K , Q and V are key, query and value respectively and QWQi , K WK i , V WV i are the
parameters.

Appendix C. System information

All models were trained on 4 NVIDIA GeForce RTX 2080 Ti using data distributed parallel module provided
by PyTorch. All inferences were done on NVIDIA GeForce RTX 1080. FEM data generation was done on CPU
Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz using a single core.

Appendix D. Model information

Dataset DDPM (U-Net) Number of parameters ViT Number of parameters

Fine Mesh dataset

Dimension= 256 × 256

38,065,023

Embedding Dimension=256

12,121,450
Input dimension: 5

Hidden dimension= 512
Number of heads = 8

Output dimension: 1 Number of layers =18
ResNet layers stages and blocks: 1,1,2,2,4,4 Patch size = 16

Sparse Mesh dataset

Dimension= 256 × 256

38,052,379

Embedding Dimension=256

11,859,050
Input dimension: 1

Hidden dimension= 512
Number of heads = 8

Output dimension: 1 Number of layers =18
ResNet layers stages and blocks: 1,1,2,2,4,4 Patch size = 16

Coarse Mesh dataset

Dimension= 32 × 32

30,579,583

Embedding Dimension=256

11,754,346
Input dimension: 5

Hidden dimension= 1024
Number of heads = 8

Output dimension: 1 Number of layers =12
ResNet layers stages and blocks: 1,1,2,2,4 Patch size = 4

Hyperelastic dataset

Dimension= 64 × 64

30,901,822

Embedding Dimension=256

10,747,754
Input dimension: 2

Hidden dimension= 512
Number of heads = 8

Output dimension: 1 Number of layers =16
ResNet layers stages and blocks: 1,1,2,2,4 Patch size = 4

Appendix E. Data availability

Please find the relevant code for FEM data generation and network: https://github.com/BaratiLab/StressD
Data can be shared upon request.
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